
Computers & Graphics (2017)

Contents lists available at ScienceDirect

Computers & Graphics

journal homepage: www.elsevier.com/locate/cag

Improved anti-aliasing for Euclidean distance transform shadow mapping

Márcio Macedoa,∗, Antônio Apolinárioa

aFederal University of Bahia, Av. Ademar de Barros, 40.170-110, Bahia, Brazil

A R T I C L E I N F O

Article history:
Received November 24, 2017

Keywords: Rendering, Real time, Shad-
ows, Anti-Aliasing

A B S T R A C T

High-quality, real-time penumbra rendering remains a challenging problem in computer
graphics. Existing techniques for real-time fixed-size penumbra simulation generate
aliasing, banding or leaking artifacts that diminish the realism of shadow rendering.
Euclidean distance transform shadow mapping aims to solve that by using a normalized
Euclidean distance transform to simulate penumbra on the basis of anti-aliased hard
shadows generated by revectorization-based shadow mapping. Despite the high visual
quality obtained with such a technique, the anti-aliasing provided by shadow revector-
ization comes at the cost of shadow overestimation artifacts that are introduced in the
scene. In this paper, we propose an improved algorithm for Euclidean distance trans-
form shadow mapping by reformulating the visibility function of revectorization-based
shadow mapping. Through an additional detailed analysis of the results, we show that
we are able to reduce shadow overestimation artifacts for penumbra simulation, gener-
ating shadows with higher visual quality than previous fixed-size penumbra shadowing
methods, while keeping real-time performance for shadow rendering.

c© 2017 Elsevier B.V. All rights reserved.

1. Introduction1

Shadows are essential in several computer graphics applica-2

tions, such as games and augmented reality, because they add3

a compelling effect, increasing the visual perception of the user4

with respect to the rendering of virtual scenes [1]. As pointed in5

[2], users usually prefer realistic shadows over fake ones when6

looking into virtual scenes. Unfortunately, accurate shadow7

rendering is still not feasible for real-time applications, mainly8

because a high number of samples must be taken from an area9

light source to approximate the direct illumination term of the10

rendering equation [3, 4], making the shadowing process costly.11

One of the most traditional ways to compute shadows in real12

time is shadow mapping [5]. By approximating the area light13

source by a single point light source, this technique discretizes14

∗Corresponding author
e-mail: marciocfmacedo@gmail.com (Márcio Macedo),

antonio.apolinario@ufba.br (Antônio Apolinário)

the 3D virtual scene, as seen from the point light source view- 15

point, into a depth buffer named shadow map that is used to 16

aid the real-time shadow computation. However, shadows gen- 17

erated on the basis of a shadow map are prone to aliasing arti- 18

facts and temporal incoherence due to the finite resolution of the 19

shadow map. Moreover, differently from an area light source, a 20

point light source is not able, in essence, to cast penumbra in the 21

scene because this type of light source is infinitesimal, such that 22

it cannot be partially occluded in the scene. Therefore, shadow 23

mapping is only able to simulate hard shadows (i.e., shadows 24

without the penumbra effect) in the scene. Unfortunately, such 25

hard shadows are unrealistic, because they are not much present 26

in the real world. 27

Aliasing artifacts are commonly suppressed by the use of tex- 28

ture linear filtering techniques, such as mip-mapping [6] and 29

anisotropic filtering [7]. However, these strategies cannot be 30

directly applied in the shadow map, because shadow mapping 31

uses a non-linear shadow test to determine the visibility condi- 32

tion of a given fragment [8]. Then, several techniques have been 33

proposed to allow shadow map filtering. Existing techniques 34

http://www.sciencedirect.com
http://www.elsevier.com/locate/cag

2 Preprint Submitted for review / Computers & Graphics (2017)

(a) PCF (b) VSM (c) EDTSM (d) EDTSM*

(a) PCF (b) VSM (c) EDTSM (d) EDTSM*(a) PCF (b) VSM (c) EDTSM (d) EDTSM*(a) PCF (b) VSM (c) EDTSM (d) EDTSM*(a) PCF (b) VSM (c) EDTSM (d) EDTSM*

(a) PCF (b) VSM (c) EDTSM (d) EDTSM*(a) PCF (b) VSM (c) EDTSM (d) EDTSM*(a) PCF (b) VSM (c) EDTSM (d) EDTSM*(a) PCF (b) VSM (c) EDTSM (d) EDTSM*

Fig. 1. Fixed-size penumbra produced by different techniques. For a low-order filter size, shadow map filtering techniques, such as PCF, generate shadows
with aliasing and banding artifacts (a). Shadow map pre-filtering techniques, such as VSM, are prone to light leaking artifacts (green closeup in (b)).
EDTSM suffers from shadow overestimation artifacts (c). The proposed approach (here named EDTSM*) is able to minimize those artifacts efficiently (d).
Images were generated for the Excavator model using a 5122 shadow map resolution.

either realize shadow filtering after the shadow test [9, 10] or1

filter the shadow map (as done in [11, 12]), such that the shad-2

ows produced by a modified version of the shadow test are al-3

ready filtered and anti-aliased. While these techniques mini-4

mize aliasing artifacts and simulate fixed-size penumbra, they5

introduce new artifacts in shadow rendering because of the fil-6

tering strategy used. Banding artifacts may appear in the final7

rendering if low-order filter sizes are used to keep real-time per-8

formance [9] (Figure 1-(a)). Techniques that filter the shadow9

map before the shadow test are prone to light leaking artifacts10

(in which a shadowed region is erroneously assumed as a lit11

region) because the filtering may incorrectly affect the shadow12

test result [13, 14] (green closeup in Figure 1-(b)). Techniques13

that filter the shadow map after the shadow test are prone to14

shadow overestimation artifacts because, during the shadow15

anti-aliasing, they can incorrectly merge parts of the shadow16

boundary that are originally disconnected [10] (Figure 1-(c)).17

Finally, filter size may directly affect the quality of the penum-18

bra simulated. Small filter sizes may produce penumbra with19

blurred aliasing artifacts along the shadow boundary (Figure 1-20

(a)). On the other hand, large filter sizes may suppress fine21

details of shadows into penumbra.22

Recently, Euclidean distance transform shadow mapping23

(EDTSM) was introduced to solve most of the problems men-24

tioned before [15]. To do so, the technique first computes anti-25

aliased hard shadows using revectorization-based shadow map-26

ping (RBSM) [10]. Then, an exact normalized EDT is com-27

puted from anti-aliased hard shadows using parallel banding28

algorithm (PBA) [16], which runs on the GPU. Finally, to re-29

duce skeleton artifacts generated by the EDT, a simple mean30

filter is applied over the shadow boundary. Indeed, EDTSM is31

able to simulate fixed-size penumbra with less aliasing, banding32

and leaking artifacts than previous work, while keeping high33

frame rates. However, by the use of RBSM as hard shadow34

anti-aliasing technique, EDTSM suffers from shadow overesti-35

mation artifacts, which decrease the realism of shadow render- 36

ing (Figure 1-(c)). 37

In this work, which is an invited extension of our Graphics 38

Interface 2017 paper [15], our main contribution is the enhance- 39

ment of the RBSM visibility function to solve the problem of 40

shadow overestimation, as shown in Figure 1-(d). Doing so, 41

we can improve not only the quality of the hard shadow anti- 42

aliasing provided by RBSM, but also the quality of the fixed- 43

size penumbra simulation generated by EDTSM, keeping the 44

processing time with a marginal overhead (about 1% of addi- 45

tional cost). 46

2. Related Work 47

In this section, we review relevant work related to the pro- 48

posed solution. We mainly cover techniques which provide 49

real-time fixed-size penumbra simulation. For a more complete 50

review of existing shadow mapping techniques, we suggest the 51

reader to see the following books [17, 18]. 52

Several strategies have already been proposed to solve the 53

aliasing problem of shadow mapping by warping [19, 20], par- 54

titioning [21, 22], traversing [23, 10] or incorporating additional 55

geometric information into the shadow map [24, 25, 26]. Unfor- 56

tunately, none of these strategies are able to simulate penumbra, 57

focusing only on the anti-aliasing of hard shadows. 58

The most traditional algorithm for fixed-size penumbra sim- 59

ulation is the percentage-closer filtering (PCF) [9]. As an ex- 60

tension of shadow mapping, PCF takes the results of shadow 61

tests performed over a filter region and averages them to deter- 62

mine the final shadow intensity. By filtering the shadow test 63

results, rather than the shadow map itself, PCF is not prone 64

to light leaking artifacts, but provides real-time performance, 65

while keeping low memory consumption for penumbra simula- 66

tion. However, PCF does not support texture pre-filtering, does 67

Preprint Submitted for review / Computers & Graphics (2017) 3

not provide scalability in terms of filter size, and requires a high1

number of samples to solve banding artifacts.2

To make the shadow filtering scalable, variance shadow3

mapping (VSM) [11] uses Chebyshev’s inequality, depth and4

squared depth stored in the shadow map to determine the5

shadow intensity of a surface point by means of a probability6

of whether the point is in shadow. VSM supports shadow map7

pre-filtering and is scalable for the filter size, but generates light8

leaking artifacts in shadows.9

To reduce the light leaking artifacts of VSM, convolution10

shadow mapping (CSM) [27] uses Fourier series to approxi-11

mate and linearize the shadow test. In CSM, the shadow map is12

converted into filtered basis textures that are used to determine13

the final shadow intensity as a weighted sum of basis functions14

stored in basis textures. CSM supports pre-filtering and reduces15

light leaking artifacts as compared to VSM, at the cost of more16

memory consumption and processing time than VSM.17

To minimize the processing time required by CSM, exponen-18

tial shadow mapping (ESM) [12, 13] approximates the shadow19

test by an exponential function, rather than Fourier series. ESM20

stores exponent-transformed depth values into the shadow map,21

which are later used for penumbra simulation. ESM is faster22

and requires less memory footprint than CSM, while generat-23

ing visual results similar to the ones obtained with VSM.24

To improve the visual quality of both VSM and ESM, ex-25

ponential variance shadow mapping (EVSM) [28] merges both26

ESM and VSM theories to produce high-quality fixed-size27

penumbra simulation. In EVSM, light leaking only occurs at28

places where both ESM and VSM techniques generate such an29

artifact.30

As an alternative to both VSM and ESM techniques, Gaus-31

sian shadow mapping (GSM) [29, 30] replaces Chebyshev’s in-32

equality by a Gaussian cumulative distribution function to min-33

imize light leaking. Also, inspired by EVSM, GSM warps its34

visibility function to take advantage of the exponential function35

proposed in ESM to further reduce light leaking.36

Moment shadow mapping (MSM) [14, 31] improves VSM37

by storing four powers of depth in the shadow map and treating38

the penumbra simulation as a Hamburger or Hausdorff moment39

problem. MSM reduces the light leaking artifacts of VSM, gen-40

erates results similar to EVSM, while keeping nearly the same41

rendering time of both techniques, but consuming more mem-42

ory requirements than VSM.43

The shadow filtering techniques presented in this section try44

to hide the aliasing artifacts generated by shadow mapping by45

the simulation of the penumbra effect. However, for small46

penumbra sizes, a high-order filter size must be used to suppress47

both aliasing and banding artifacts at the penumbra location.48

Taking advantage of both shadow anti-aliasing and fixed-size49

penumbra simulation strategies, the revectorization-based PCF50

(RPCF) [10] applies PCF over anti-aliased hard shadows gener-51

ated with RBSM to simulate the penumbra effect. In fact, RPCF52

is able to generate high-quality fixed-size penumbra even for53

low-order filter sizes and low-resolution shadow maps. How-54

ever, RPCF is slower than PCF and shadow map filtering tech-55

niques because of the additional cost of the shadow revectoriza-56

tion, which reduces its applicability in real-time applications.57

To make RPCF more scalable and faster, EDTSM [15] es- 58

timates the penumbra intensity of a region by an exact nor- 59

malized EDT that is computed over revectorized hard shadows. 60

EDTSM is able to minimize aliasing, banding and light leak- 61

ing artifacts, but suffers from the overestimation caused by the 62

shadow revectorization. 63

To the best of our knowledge, the only existing solutions 64

that make use of EDT to simulate penumbra are the stylized 65

shadows [32] and our previous work, EDTSM [15]. Styl- 66

ized shadows compute a signed distance function from an ac- 67

curate hard shadow to generate artistic, non-real-time, non- 68

photorealistic shadows. Distance transform is specially used 69

to control shadow and variable-size penumbra sizes. EDTSM 70

computes a normalized EDT from a revectorized hard shadow 71

to simulate fixed-size penumbra in real time. In this technique, 72

distance transform is used to compute the shadow intensities 73

that make the normalized EDT to resemble a penumbra. 74

In general, penumbra simulation techniques are an efficient 75

alternative to shadow mapping. Techniques that filter the 76

shadow map typically warp the depth stored in the shadow 77

map into another basis function to make the penumbra simu- 78

lation scalable in terms of filter size. However, shadow map 79

filtering introduces noticeable light leaking artifacts, which re- 80

duce the shadow visual quality. On the other hand, PCF, RPCF 81

and EDTSM techniques filter the hard shadows produced with 82

shadow mapping to avoid light leaking. However, PCF and 83

RPCF are not scalable with respect to the filter size, while 84

EDTSM suffers from overestimation artifacts. Since our goal 85

is to simulate high-quality fixed-size penumbra in real time, we 86

show how we can improve the visual quality of shadows gener- 87

ated with EDTSM by changing the RBSM visibility function, 88

reducing shadow overestimation artifacts, while keeping real- 89

time performance. 90

3. Euclidean Distance Transform Shadow Mapping 91

EDTSM is a technique that uses Euclidean distance trans- 92

form to simulate the penumbra effect over anti-aliased hard 93

shadows. The main assumption of EDTSM is that the penumbra 94

intensity of a fragment can be approximated by the Euclidean 95

distance of the fragment to the nearest fragment located in the 96

hard shadow boundary. Then, this Euclidean distance is nor- 97

malized inside a user-defined fixed-size penumbra region be- 98

cause the penumbra intensity of a fragment must lie in the in- 99

terval of intensities between the umbra and lit regions. 100

As described above, EDTSM requires the use of a hard 101

shadow anti-aliasing technique before the fixed-size penumbra 102

simulation. In our previous attempt, we have used RBSM to 103

perform the shadow anti-aliasing (Section 3.1). However, the 104

original visibility function of RBSM suffers from shadow over- 105

estimation. In this work, we do propose an improved visibility 106

function for RBSM to solve the shadow overestimation problem 107

of RBSM and, consequently, EDTSM (Section 3.2). 108

3.1. Revectorization-Based Shadow Mapping 109

The first step of EDTSM is the generation of anti-aliased hard 110

shadows. To do so, we make use of RBSM, an algorithm that 111

4 Preprint Submitted for review / Computers & Graphics (2017)

(a) (b) (c) (d) (e)

Fig. 2. An overview of the original RBSM. First, a shadow test is computed for every fragment projected in the light space (yellow grid). Then, for each
lit fragment, a neighbourhood evaluation (green arrows in (a)) is conducted to detect the fragments located in the aliased shadow boundary (a). With the
neighbourhood evaluation, we are able to not only detect aliased fragments, but also the directions of where the shadow boundary is located (b). Next, the
algorithm traverses the light space to determine the size of the aliasing (blue arrows in (c)) and the normalized relative distance of each fragment located
in the shadow boundary to the origin of the local aliasing (d). Finally, a visibility function is used to define the new anti-aliased shadow boundary in the
camera space (red grid) (e).

aims to minimize the hard shadow aliasing problem by taking1

advantage of the increased screen-space resolution provided by2

the camera view to traverse the shadow boundary, recovering3

an approximate shadow boundary at the aliased location.4

An overview of the entire RBSM algorithm is illustrated in5

Figure 2 and is detailed as follows. RBSM takes as input the6

shadow map and the scene rendered from the camera view-7

point, with the aliased hard shadows estimated by the shadow8

test (Figure 2-(a)). After the evaluation of the spatial coherency9

between neighbours in the shadow map (Figure 2-(a)), the al-10

gorithm proceeds by detecting the directions of where aliasing11

artifacts are located (Figure 2-(b)). In RBSM, these directions12

(green arrows in Figure 2-(b)) are represented as discontinuities13

in the shadowing process. On the basis of the discontinuity rep-14

resentation, the next step of RBSM consists in the traversal of15

the lit side of the shadow boundary (Figure 2-(c)). This traver-16

sal is performed with the goal of computing not only the size of17

the aliased boundary where the fragment is located, but also the18

relative position of the fragment in this aliased boundary. Af-19

ter the traversal is ended in all directions, RBSM computes the20

size of the aliased boundary and the distance of each fragment21

to the ends of the shadow boundary. This distance is normalized22

to the origin of the local coordinate system of the aliased bound-23

ary, as shown in Figure 2-(d). Finally, a linear comparison be-24

tween vertical and horizontal normalized distances is computed25

to determine whether a fragment must be revectorized (put in26

shadow) by the algorithm (Figure 2-(e)).27

To formalize the process that happens before the RBSM, let28

us call a surface point visible in the camera view as p. Also,29

let us define the distance of p to the point light source as pz.30

Let us refer to each shadow map texel as tx,y, where x and y are31

the horizontal and vertical texture coordinates of t. Let us also32

define z(tx,y) as a function that retrieves the distance value of the33

light blocker of p stored in the corresponding shadow map texel34

tx,y. Then, the shadow test proposed in the traditional shadow35

mapping technique can be formulated as s(pz, z(tx,y))36

s(pz, z(tx,y)) =

0 if pz > z(tx,y),
1 otherwise.

(1)

To minimize the aliasing problem caused by the finite resolu-37

tion of the shadow map, RBSM first evaluates the shadow test 38

for the 4-connected neighbourhood of each lit fragment pro- 39

jected on the shadow map, as follows 40

N =
[
s(z(tx−ox,y)), s(z(tx+ox,y)), s(z(tx,y+oy)), s(z(tx,y−oy))

]
, (2)

where ox and oy are shadow map offset values (the inverse of 41

the shadow map width and height)1. 42

Given the neighbourhood evaluation, the next step of RBSM 43

determines the directions where the aliasing artifacts, or shadow 44

discontinuities, are located (Figure 2-(b)). In this context, dis- 45

continuity is simply defined as the absolute difference of neigh- 46

bour shadow tests, which can be stored in an integer array 47

d =
[
|Nx − s|, |Ny − s|, |Nz − s|, |Nw − s|

]
. (3)

As calculated in Equation (3), d is a four-dimensional vec- 48

tor that stores the coherency of neighbour shadow tests. Hence, 49

rather than being used to detect the directions of the shadow 50

boundary in a four-dimensional space, d is simply used to de- 51

tect whether a shadow boundary exists for each one of the four 52

possible 2D directions (i.e., dx for the left direction, dy for the 53

right direction, dy for the top direction, and dz for the bottom di- 54

rection). For instance, dx = 1 indicates that the shadow bound- 55

ary is located at the left side of a fragment. dx = 0 indicates the 56

opposite case, where the shadow boundary is not located at the 57

left side of a fragment. 58

The following step of RBSM consists in the shadow bound- 59

ary traversal. For every lit fragment inside the shadow bound- 60

ary, the algorithm performs a search to find the ends of the 61

shadow boundary in all the four directions of the 2D space (Fig- 62

ure 2-(c)). For each shadow map neighbour being accessed in 63

a specific direction, RBSM computes the shadow test in Equa- 64

tion (1) and the discontinuity information in Equation (3) to 65

determine whether the neighbour fragment is in shadow or is 66

lit, but does not have any discontinuity direction. Both cases 67

characterize that the neighbour fragment being traversed is out 68

1pz was omitted from Equation (2) because pz has the same value in the four
shadow tests.

Preprint Submitted for review / Computers & Graphics (2017) 5

(a) (b) (c) (d) (e)

Fig. 3. An overview of the improved visibility function for RBSM. First, we compute the shadow test for every fragment visible in the camera view. Then,
for each fragment projected on the shadow map, we evaluate the shadow test of neighbour shadow map texels (a) and detect the directions where the
aliasing is located (b), regardless of whether the fragment is located in the inner- or the outer-side of the shadow boundary. Then, for the fragments located
in the aliased boundary, we perform the traversal over the shadow boundary to compute the size of the shadow boundary (c) and the normalized relative
distance of the fragments to the origin of the local aliasing (d). Taking advantage of the normalized relative distance computed for both sides of the shadow
boundary, we are able to compute a dilated version of the revectorized shadow, with less overestimation artifacts than the original approach (e).

of the shadow boundary, indicating that the traversal must be1

ended for that particular direction. While the rotation of the2

light source influences the visual aspect of the shadow alias-3

ing seen from the camera viewpoint, the generated shadow map4

is still aligned with the light source coordinate system. There-5

fore, the traversal provided by RBSM over X and Y axis of the6

shadow map works well regardless of the orientation of the light7

source.8

Let us define the normalized distance of the fragment to9

the shadow edge as α, where αx and αy store the normal-10

ized distance to the horizontal and vertical ends of the shadow11

boundary, respectively. Given the shadow boundary orientation12

shown in Figure 2-(d), where the origin of the local coordinate13

system is located in the corner of the aliasing, the RBSM vis-14

ibility function v(αx, αy) to produce a more anti-aliased hard15

shadow (Figure 2-(e)) can be computed as follows16

v(αx, αy) =

0 if 1.0 − αx > αy,

1 otherwise.
(4)

While this way of revectorizing shadow boundaries is able to17

suppress aliasing artifacts with reasonable accuracy, the algo-18

rithm uses a conservative approach to perform the shadow anti-19

aliasing because it operates only on the lit side of the shadow20

boundary, achieving a small overhead compared to shadow21

mapping, but introducing the overestimation of the shadow22

boundary. As shown in Figure 5-(b), details of the shadow may23

be lost mainly for parts of the shadow that are too near to each24

other, since the algorithm will tend to merge, or at least ap-25

proximate, these originally disconnected regions. To solve this26

problem, we propose an adaptation of the RBSM pipeline to27

reduce the overestimation of the hard shadow anti-aliasing.28

3.2. Improved Shadow Anti-Aliasing29

The main problem of RBSM is that, by working only over30

the lit side of the shadow boundary, the technique is able to re-31

cover an approximate shadow boundary, but suffers from over-32

estimation artifacts because the real, accurate shadow boundary33

is not located only in the external part of shadows produced by34

shadow mapping. By analyzing both sides (lit and shadowed),35

we can reduce the overestimation. In this sense, to improve the36

(a)

01

1 0 1

1

αx

α
y

(b) (c)

Fig. 4. The local coordinate system shown in (a) is used as reference for the
calculation of the normalized distance (α) of the fragment to the origin of
the aliased shadow boundary (b). On the basis of this value, we can fit the
revectorization line (green line in (c)) that will define the visibility condition
of each fragment.

anti-aliasing provided by RBSM, we propose an extension of 37

its pipeline to use both lit and shadowed sides of the shadow 38

boundary for hard shadow revectorization. 39

An overview of the new RBSM pipeline is shown in Figure 40

3. As can be seen in Figure 3-(a), after the shadow map gen- 41

eration, both shadow test and neighbourhood evaluation given 42

in Equations (1) and (2) are computed for all lit and now also 43

shadowed fragments visible in the camera view. Then, on the 44

basis of the neighbourhood evaluation, the algorithm detects all 45

the fragments located in the shadow boundary using the same 46

discontinuity test and computes the discontinuity directions in 47

Equation (3) for both sides of the shadow boundary (Figure 48

3-(b)). For each fragment in the aliased shadow boundary, a 49

traversal is performed for both sides of the shadow boundary 50

(Figure 3-(c)) to estimate the aliasing size and the normalized 51

relative distance of each fragment to the shadow boundary (Fig- 52

ure 3-(d)). Then, a new visibility function calculation is used to 53

determine the new location of the revectorized shadow bound- 54

ary (Figure 3-(e)). 55

During the shadow boundary traversal, the shadow test in 56

Equation (1) is computed for every neighbour shadow map texel 57

being accessed. To detect the end of the shadow boundary, 58

we check if the neighbour fragment has a different visibility 59

condition than the one estimated by the initial fragment of the 60

traversal. In this sense, for lit fragments, the shadow boundary 61

ends in a shadowed fragment. On the counterpart, for shad- 62

owed fragments, the shadow boundary ends in a lit fragment. If 63

6 Preprint Submitted for review / Computers & Graphics (2017)

(a) Shadow Mapping (b) Original RBSM (c) Improved RBSM

(a) Shadow Mapping (b) Original RBSM (c) Improved RBSM(a) Shadow Mapping (b) Original RBSM (c) Improved RBSM(a) Shadow Mapping (b) Original RBSM (c) Improved RBSM

(a) Shadow Mapping (b) Original RBSM (c) Improved RBSM(a) Shadow Mapping (b) Original RBSM (c) Improved RBSM(a) Shadow Mapping (b) Original RBSM (c) Improved RBSM

(a) Shadow Mapping (b) Original RBSM (c) Improved RBSM(a) Shadow Mapping (b) Original RBSM (c) Improved RBSM(a) Shadow Mapping (b) Original RBSM (c) Improved RBSM

Fig. 5. The original visibility function of RBSM suppresses aliasing artifacts generated by shadow mapping (a), but overestimating the shadow (b). The
proposed new visibility function is able to minimize aliasing artifacts with less overestimation artifacts (c). Images were generated for the Raptor (top),
Excavator (middle) and Fence (bottom) models using a 5122, 10242 and 20482 shadow map resolutions.

the visibility condition between neighbours is the same, we still1

compute the discontinuity directions in Equation (3) and check2

whether neighbour fragments share at least one discontinuity3

direction. If that is not the case, the traversal has stepped out of4

the lit/shadowed side of the aliased shadow boundary.5

Once the traversal has ended, we proceed with the computa-6

tion of the normalized distance of each fragment to the origin7

of the aliased shadow boundary (Figure 3-(d)). Depending on8

whether the fragment is located inside or outside the shadowed9

part of the boundary, the origin of this local coordinate system10

is changed. Nevertheless, the origin is still located at the corner11

of the aliasing.12

Given the orientation shown in Figure 4-(a), the normalized13

distances αx and αy (Figure 4-(b)), and the shadow test s in14

Equation (1), we can first analyze the proposed improved vis-15

ibility function v(s, αx, αy) for the separate cases of when the16

fragment is lit (s = 1) or is in shadow (s = 0):17

v(0, αx, αy) =

0 if 1.0 − αx − αy < 0.5,
1 otherwise,

(5)

v(1, αx, αy) =

0 if αx + αy < 0.5,
1 otherwise.

(6)

As shown in Figure 4-(c), for the originally shadowed part of 18

the shadow boundary (right yellow texel of Figure 4-(a)), when- 19

ever the distance α is greater or equal than 0.5, the shadowed 20

part is changed to be lit in Equation (5). Likewise, for the origi- 21

nally lit part of the shadow boundary (left yellow texel of Figure 22

4-(a)), whenever the distance α is lower than 0.5, the lit part is 23

put in shadow, as shown in Equation (6). 24

As can be seen in Equations (5, 6), the visibility functions are 25

in some way complementary to each other. So, we can redefine 26

the visibility function as 27

Preprint Submitted for review / Computers & Graphics (2017) 7

(a)

D D

(b)

P

(c)

D ≤ P
2

(d)

1
2 − D

P
1
2 +

D
P

(e)

Fig. 6. An overview of the EDTSM. First, the RBSM is used (a) to generate anti-aliased shadow boundaries (green rectangles) in the camera view (red
grid). Then, for every fragment in the screen space, the world-space position is retrieved from the G-buffer, and the world-space distance D to closest
fragment located in the shadow boundary is computed (b). Given a user-defined penumbra size P (c), the algorithm restricts the penumbra computation
for fragments located in the penumbra region (d). Finally, the EDT previously computed is normalized to simulate the smooth transition between lit and
umbra regions that characterize the penumbra effect (e).

v(s, αx, αy) =

0 if (1 − s) + (2s − 1)(αx + αy) < 0.5
1 otherwise.

(7)

In Figure 5, we show a comparison between the hard shad-1

ows produced with shadow mapping (Figure 5-(a)), the origi-2

nal RBSM visibility function (Figure 5-(b)) and the proposed3

improved visibility function (Figure 5-(c)). By using the visi-4

bility function of Equation (7), we can properly revectorize the5

shadow boundary, keeping the original details of the shadow6

captured by shadow mapping, and performing the anti-aliasing7

with less overestimation artifacts than the original RBSM visi-8

bility function (Figure 5-(c)).9

3.3. Euclidean Distance Transform Penumbra Simulation10

Let us call seed a fragment that lies in the hard shadow11

boundary (green rectangles in Figure 6). It will be used as a12

basis for the EDT computation. Even if it is located in a thin13

aliased shadow, a seed fragment can be easily located in the14

screen space of the camera view by the application of a 3 × 315

rectangular filter over the shadows produced with the improved16

RBSM. In this case, a fragment is a seed if the hard shadow in-17

tensity of the fragment differs from the hard shadow intensity of18

one of its neighbours located in the 8-connected neighbourhood19

of the fragment in the screen space (Figure 6-(a)).20

Once the seed fragments have been detected in the image,21

the EDT can be computed. So, for each non-seed fragment, the22

world-space Euclidean distance D of the fragment to the near-23

est seed located in the shadow boundary is computed (Figure24

6-(b)), D being a world-space distance computed on the ba-25

sis of the world-space position retrieved from a G-buffer [33]26

previously computed. Just by applying the EDT in the world27

space, the user does not have control over the desired penumbra28

size. To solve this problem, let us assume P as a user-defined29

parameter which controls the size of the penumbra that will be30

simulated. As shown in Figure 6-(c), each half of the penumbra31

size belongs to one side of the shadow boundary. Therefore,32

one can easily detect whether a fragment belongs to the desired33

penumbra region by checking if the distance of the fragment to 34

the shadow boundary is lower or equal than half of the penum- 35

bra size (i.e., D ≤ P/2) (Figure 6-(d)). For the fragments lo- 36

cated outside of the penumbra region, the shadow intensity is 37

given by the shadow test (umbra and lit regions in Figure 6- 38

(d)). Meanwhile, for the fragments in the penumbra region, we 39

keep the result of the EDT as shadow intensity. 40

As can be seen in Figure 6-(d), EDT does not resemble a 41

penumbra mostly because it is not normalized. The transition 42

between umbra and lit regions in the desired penumbra is not 43

smooth as it should be to characterize a penumbra. To solve 44

this problem, the Euclidean distance is normalized to the closed 45

unit interval [0, 1], assuming that umbra and lit fragments have 46

intensities 0 and 1, respectively. Hence, the final intensity I of 47

the fragments located in the penumbra region is 48

I =

 1
2 − D

P if the fragment was in shadow,
1
2 + D

P otherwise.
(8)

As shown in Equation (8), the final intensity of each fragment 49

depends on the previous visibility condition given by RBSM. 50

For instance, knowing that the maximum distance of each frag- 51

ment belonging to the penumbra region to the nearest seed is 52

P/2 (Figure 6-(d)), if the fragment was in shadow, as computed 53

by RBSM, the new penumbra intensity of the fragment must 54

lie in the interval [0, 0.5], because 0 is the intensity of the frag- 55

ments located in shadow and 0.5 is the intensity of the frag- 56

ments located in the middle of the penumbra region. Accord- 57

ingly, lit fragments, as computed by RBSM, must have their 58

penumbra intensities lying in the interval [0.5, 1]. By the use 59

of Equation (8), EDTSM is able to satisfy these constraints and 60

simulate the penumbra effect (Figure 6-(e)). 61

3.4. Euclidean Distance Transform Shadow Filtering 62

EDT is well known to generate skeletons along gradient dis- 63

continuities [34]. This property of EDT is desirable in several 64

applications, such as integer medial axis estimation [35]. How- 65

ever, these skeletons generated by EDT, when visualized inside 66

a penumbra, constitute an artifact because a penumbra does not 67

8 Preprint Submitted for review / Computers & Graphics (2017)

(a) (b)

(a) (b)(a) (b)

(a) (b)(a) (b)

Fig. 7. After the EDT computation, skeleton artifacts may arise along gra-
dient discontinuities (green closeup of (a)). Also, aliasing artifacts may still
remain even after the shadow revectorization (blue closeup of (a)). By ap-
plying a simple mean filter, those artifacts can be suppressed (b). Images
were generated for the Armadillo model using a 5122 shadow map resolu-
tion.

have skeletons along its boundary (green closeup of Figure 7-1

(a)). Moreover, RBSM is able to minimize aliasing artifacts2

generated by shadow mapping, but is not able to remove all of3

them (blue closeup of Figure 7-(a)). To minimize both skele-4

ton and aliasing artifacts simultaneously, a simple screen-space5

separable mean filter is applied over the shadow boundary (Fig-6

ure 7-(b)). The mean filtering was chosen to solve these prob-7

lems because of its simplicity, low processing time, separability8

and effectiveness to suppress the skeleton artifacts even for low-9

order filter sizes.10

The EDT algorithm is performed in screen space, taking as11

input the image of the shadowed scene rendered from the cam-12

era viewpoint. In this sense, special care must be taken to make13

this process edge aware and viewpoint invariant. Edge aware-14

ness is important because different objects cannot influence on15

the penumbra computation of each other. Viewpoint invariance16

is desirable because the penumbra size must be kept constant,17

regardless of the distance of the viewer to the shadowed region.18

EDTSM solves both problems by the use of the depth value and19

world-space position stored in the G-buffer [33]. Depth infor-20

mation is used to detect edges, which separate different objects21

in the scene. In this sense, for instance, a fragment is only con-22

sidered to be in penumbra if the depth difference between the23

fragment and its nearest seed is below a user-defined threshold24

(empirically we have set this depth threshold as 2.5 × 10−3).25

Also, only neighbours with similar depth difference are taken26

into account for mean filtering. In counterpart, to make the27

EDT viewpoint invariant, world-space position is used to com-28

pute the Euclidean distance values D in the EDT. Inspired by29

screen-space soft shadow algorithms, the viewpoint invariance30

of the mean filtering is solved by estimating the mean filter size31

wscreen
f ilter that varies according to the distance of the camera to the32

scene. Here, wscreen
f ilter is measured as [36]33

wscreen
f ilter =

w f ilterzscreen

pzeye

, (9)

zscreen =
1

2tan f ovy

2

, (10)

where w f ilter is the mean filter size defined by the user, pzeye
is 34

the distance of the fragment p to the center of the camera and 35

f ovy specifies the vertical field of view angle. 36

4. Results and Discussion 37

In this section, we compare the original EDTSM [15] and 38

the proposed improved EDTSM (hereafter named as EDTSM* 39

only for clarity) with traditional shadow mapping techniques, 40

such as shadow mapping itself [5], PCF [9], VSM [11], and 41

EVSM [28], as well as state-of-the-art penumbra simulation 42

techniques, such as MSM [14] and RPCF [10]. With excep- 43

tion of shadow mapping, all these techniques were chosen for 44

performance and visual quality evaluation because they produce 45

fixed-size penumbra, lying in the scope of this paper. Therefore, 46

techniques that simulate variable-size penumbra (i.e., soft shad- 47

ows) on the basis of point or area light sources are not evaluated 48

in this section. 49

We have tested different penumbra simulation techniques in 50

three distinct scenarios. Figure 8 shows a model with fine de- 51

tailed structures along its boundary. Figure 9 shows shadows 52

cast on a non-planar model. Figure 10 shows a scenario with 53

several light blocker and shadow receiver objects positioned 54

over each other. In the supplementary video, we show addi- 55

tional visual results of the proposed EDTSM* algorithm, in- 56

cluding temporal consistency. 57

4.1. Experimental Environment 58

A computer equipped with an Intel CoreTM i7-3770K CPU 59

(3.50 GHz), 8GB RAM, and an NVIDIA GeForce GTX Ti- 60

tan X graphics card, was used to run the experimental tests. 61

OpenGL [37] and GLSL [38] languages were used to imple- 62

ment the EDTSM algorithm. For EDT computation, we have 63

used the open-source implementation of the parallel banding 64

algorithm (PBA) [16] implemented in CUDA [39]. Although 65

many other works have attempted to compute EDT efficiently 66

[40, 41, 42], in our tests, PBA delivered the fastest and most ac- 67

curate EDT computation. CUDA/OpenGL interoperability was 68

used to optimize resource management and processing time. A 69

filter of order 15 × 15 is used to suppress skeleton and banding 70

artifacts. For RPCF, we have used a filter of order 7 × 7, as 71

suggested in [10]. 72

4.2. Rendering Quality 73

In the blue closeups of Figures 8 and 9, we show whether 74

the different shadowing techniques are able to suppress aliasing 75

artifacts. Without taking advantage of any anti-aliasing strat- 76

egy, the traditional shadow mapping generates aliasing artifacts 77

along the shadow boundary (Figures 8-(a), 9-(a) and 10-(a)). 78

For small penumbra sizes, the blur provided by PCF is insuf- 79

ficient to suppress aliasing artifacts (Figures 8-(b) and 9-(b)). 80

Preprint Submitted for review / Computers & Graphics (2017) 9

(a) Shadow Mapping (b) PCF (c) VSM (d) EVSM

(e) MSM (f) RPCF (g) EDTSM (h) EDTSM*

(a) Shadow Mapping (b) PCF (c) VSM (d) EVSM

(e) MSM (f) RPCF (g) EDTSM (h) EDTSM*

(a) Shadow Mapping (b) PCF (c) VSM (d) EVSM

(e) MSM (f) RPCF (g) EDTSM (h) EDTSM*

(a) Shadow Mapping (b) PCF (c) VSM (d) EVSM

(e) MSM (f) RPCF (g) EDTSM (h) EDTSM*

(a) Shadow Mapping (b) PCF (c) VSM (d) EVSM

(e) MSM (f) RPCF (g) EDTSM (h) EDTSM*

(a) Shadow Mapping (b) PCF (c) VSM (d) EVSM

(e) MSM (f) RPCF (g) EDTSM (h) EDTSM*

(a) Shadow Mapping (b) PCF (c) VSM (d) EVSM

(e) MSM (f) RPCF (g) EDTSM (h) EDTSM*

(a) Shadow Mapping (b) PCF (c) VSM (d) EVSM

(e) MSM (f) RPCF (g) EDTSM (h) EDTSM*

(a) Shadow Mapping (b) PCF (c) VSM (d) EVSM

(e) MSM (f) RPCF (g) EDTSM (h) EDTSM*

(a) Shadow Mapping (b) PCF (c) VSM (d) EVSM

(e) MSM (f) RPCF (g) EDTSM (h) EDTSM*

(a) Shadow Mapping (b) PCF (c) VSM (d) EVSM

(e) MSM (f) RPCF (g) EDTSM (h) EDTSM*

(a) Shadow Mapping (b) PCF (c) VSM (d) EVSM

(e) MSM (f) RPCF (g) EDTSM (h) EDTSM*

(a) Shadow Mapping (b) PCF (c) VSM (d) EVSM

(e) MSM (f) RPCF (g) EDTSM (h) EDTSM*

(a) Shadow Mapping (b) PCF (c) VSM (d) EVSM

(e) MSM (f) RPCF (g) EDTSM (h) EDTSM*

(a) Shadow Mapping (b) PCF (c) VSM (d) EVSM

(e) MSM (f) RPCF (g) EDTSM (h) EDTSM*

(a) Shadow Mapping (b) PCF (c) VSM (d) EVSM

(e) MSM (f) RPCF (g) EDTSM (h) EDTSM*

(a) Shadow Mapping (b) PCF (c) VSM (d) EVSM

(e) MSM (f) RPCF (g) EDTSM (h) EDTSM*

(a) Shadow Mapping (b) PCF (c) VSM (d) EVSM

(e) MSM (f) RPCF (g) EDTSM (h) EDTSM*

(a) Shadow Mapping (b) PCF (c) VSM (d) EVSM

(e) MSM (f) RPCF (g) EDTSM (h) EDTSM*

(a) Shadow Mapping (b) PCF (c) VSM (d) EVSM

(e) MSM (f) RPCF (g) EDTSM (h) EDTSM*

(a) Shadow Mapping (b) PCF (c) VSM (d) EVSM

(e) MSM (f) RPCF (g) EDTSM (h) EDTSM*

(a) Shadow Mapping (b) PCF (c) VSM (d) EVSM

(e) MSM (f) RPCF (g) EDTSM (h) EDTSM*

(a) Shadow Mapping (b) PCF (c) VSM (d) EVSM

(e) MSM (f) RPCF (g) EDTSM (h) EDTSM*

(a) Shadow Mapping (b) PCF (c) VSM (d) EVSM

(e) MSM (f) RPCF (g) EDTSM (h) EDTSM*

(a) Shadow Mapping (b) PCF (c) VSM (d) EVSM

(e) MSM (f) RPCF (g) EDTSM (h) EDTSM*

Fig. 8. Fixed-size penumbra produced by different techniques. Each closeup shows whether the technique handles overestimation (green), light leaking
(red) and aliasing (blue) artifacts. Images were generated for the YeahRight model using a 10242 shadow map resolution.

The same effect is visible for shadow map filtering techniques1

(Figures 8-(c, d, e) and 9-(c, d, e)), which simulate penumbra2

with blurred jagged boundaries along the shadow. Techniques3

that use shadow revectorization as basis for penumbra simula-4

tion (RPCF, EDTSM and EDTSM*) are able to minimize this5

artifact efficiently (Figures 8-(f, g, h) and 9-(f, g, h)).6

In the red closeups of Figures 8, 9 and 10, we show whether7

a technique generates light leaking artifacts inside the shadow.8

Taking as reference the shadows generated by shadow mapping 9

(Figures 8-(a), 9-(a) and 10-(a)), all shadow map filtering tech- 10

niques are prone to light leaking artifacts. In this sense, VSM 11

(Figures 8-(c), 9-(c) and 10-(c)) is more susceptible to light 12

leaking than EVSM (Figures 8-(d), 9-(d) and 10-(d)). In terms 13

of visual quality, MSM is better than both VSM and EVSM, 14

greatly reducing the light leaking artifacts (the effectiveness of 15

MSM is mainly visible in Figure 9-(e)). The techniques that 16

10 Preprint Submitted for review / Computers & Graphics (2017)

(a) Shadow Mapping (b) PCF (c) VSM (d) EVSM

(e) MSM (f) RPCF (g) EDTSM (h) EDTSM*

(a) Shadow Mapping (b) PCF (c) VSM (d) EVSM

(e) MSM (f) RPCF (g) EDTSM (h) EDTSM*

(a) Shadow Mapping (b) PCF (c) VSM (d) EVSM

(e) MSM (f) RPCF (g) EDTSM (h) EDTSM*

(a) Shadow Mapping (b) PCF (c) VSM (d) EVSM

(e) MSM (f) RPCF (g) EDTSM (h) EDTSM*

(a) Shadow Mapping (b) PCF (c) VSM (d) EVSM

(e) MSM (f) RPCF (g) EDTSM (h) EDTSM*

(a) Shadow Mapping (b) PCF (c) VSM (d) EVSM

(e) MSM (f) RPCF (g) EDTSM (h) EDTSM*

(a) Shadow Mapping (b) PCF (c) VSM (d) EVSM

(e) MSM (f) RPCF (g) EDTSM (h) EDTSM*

(a) Shadow Mapping (b) PCF (c) VSM (d) EVSM

(e) MSM (f) RPCF (g) EDTSM (h) EDTSM*

(a) Shadow Mapping (b) PCF (c) VSM (d) EVSM

(e) MSM (f) RPCF (g) EDTSM (h) EDTSM*

(a) Shadow Mapping (b) PCF (c) VSM (d) EVSM

(e) MSM (f) RPCF (g) EDTSM (h) EDTSM*

(a) Shadow Mapping (b) PCF (c) VSM (d) EVSM

(e) MSM (f) RPCF (g) EDTSM (h) EDTSM*

(a) Shadow Mapping (b) PCF (c) VSM (d) EVSM

(e) MSM (f) RPCF (g) EDTSM (h) EDTSM*

(a) Shadow Mapping (b) PCF (c) VSM (d) EVSM

(e) MSM (f) RPCF (g) EDTSM (h) EDTSM*

(a) Shadow Mapping (b) PCF (c) VSM (d) EVSM

(e) MSM (f) RPCF (g) EDTSM (h) EDTSM*

(a) Shadow Mapping (b) PCF (c) VSM (d) EVSM

(e) MSM (f) RPCF (g) EDTSM (h) EDTSM*

(a) Shadow Mapping (b) PCF (c) VSM (d) EVSM

(e) MSM (f) RPCF (g) EDTSM (h) EDTSM*

(a) Shadow Mapping (b) PCF (c) VSM (d) EVSM

(e) MSM (f) RPCF (g) EDTSM (h) EDTSM*

(a) Shadow Mapping (b) PCF (c) VSM (d) EVSM

(e) MSM (f) RPCF (g) EDTSM (h) EDTSM*

(a) Shadow Mapping (b) PCF (c) VSM (d) EVSM

(e) MSM (f) RPCF (g) EDTSM (h) EDTSM*

(a) Shadow Mapping (b) PCF (c) VSM (d) EVSM

(e) MSM (f) RPCF (g) EDTSM (h) EDTSM*

(a) Shadow Mapping (b) PCF (c) VSM (d) EVSM

(e) MSM (f) RPCF (g) EDTSM (h) EDTSM*

(a) Shadow Mapping (b) PCF (c) VSM (d) EVSM

(e) MSM (f) RPCF (g) EDTSM (h) EDTSM*

(a) Shadow Mapping (b) PCF (c) VSM (d) EVSM

(e) MSM (f) RPCF (g) EDTSM (h) EDTSM*

(a) Shadow Mapping (b) PCF (c) VSM (d) EVSM

(e) MSM (f) RPCF (g) EDTSM (h) EDTSM*

(a) Shadow Mapping (b) PCF (c) VSM (d) EVSM

(e) MSM (f) RPCF (g) EDTSM (h) EDTSM*

Fig. 9. Fixed-size penumbra produced by different techniques. Each closeup shows whether the technique handles overestimation (green), light leaking
(red) and aliasing (blue) artifacts. Images were generated for the Bunny model using a 10242 shadow map resolution.

filter shadows to simulate penumbra (PCF, RPCF, EDTSM and1

EDTSM*) are not prone to light leaking artifacts (Figures 8-(b,2

f, g, h), 9-(b, f, g, h) and 10-(b, f, g, h)).3

In the green closeups of Figures 8, 9 and 10, we zoom in 4

parts of shadows that may be suppressed by the shadowing 5

technique, causing the overestimation artifact. PCF filters the 6

Preprint Submitted for review / Computers & Graphics (2017) 11

(a) Shadow Mapping (b) PCF (c) VSM (d) EVSM

(e) MSM (f) RPCF (g) EDTSM (h) EDTSM*

(a) Shadow Mapping (b) PCF (c) VSM (d) EVSM

(e) MSM (f) RPCF (g) EDTSM (h) EDTSM*

(a) Shadow Mapping (b) PCF (c) VSM (d) EVSM

(e) MSM (f) RPCF (g) EDTSM (h) EDTSM*

(a) Shadow Mapping (b) PCF (c) VSM (d) EVSM

(e) MSM (f) RPCF (g) EDTSM (h) EDTSM*

(a) Shadow Mapping (b) PCF (c) VSM (d) EVSM

(e) MSM (f) RPCF (g) EDTSM (h) EDTSM*

(a) Shadow Mapping (b) PCF (c) VSM (d) EVSM

(e) MSM (f) RPCF (g) EDTSM (h) EDTSM*

(a) Shadow Mapping (b) PCF (c) VSM (d) EVSM

(e) MSM (f) RPCF (g) EDTSM (h) EDTSM*

(a) Shadow Mapping (b) PCF (c) VSM (d) EVSM

(e) MSM (f) RPCF (g) EDTSM (h) EDTSM*

(a) Shadow Mapping (b) PCF (c) VSM (d) EVSM

(e) MSM (f) RPCF (g) EDTSM (h) EDTSM*

(a) Shadow Mapping (b) PCF (c) VSM (d) EVSM

(e) MSM (f) RPCF (g) EDTSM (h) EDTSM*

(a) Shadow Mapping (b) PCF (c) VSM (d) EVSM

(e) MSM (f) RPCF (g) EDTSM (h) EDTSM*

(a) Shadow Mapping (b) PCF (c) VSM (d) EVSM

(e) MSM (f) RPCF (g) EDTSM (h) EDTSM*

(a) Shadow Mapping (b) PCF (c) VSM (d) EVSM

(e) MSM (f) RPCF (g) EDTSM (h) EDTSM*

(a) Shadow Mapping (b) PCF (c) VSM (d) EVSM

(e) MSM (f) RPCF (g) EDTSM (h) EDTSM*

(a) Shadow Mapping (b) PCF (c) VSM (d) EVSM

(e) MSM (f) RPCF (g) EDTSM (h) EDTSM*

(a) Shadow Mapping (b) PCF (c) VSM (d) EVSM

(e) MSM (f) RPCF (g) EDTSM (h) EDTSM*

(a) Shadow Mapping (b) PCF (c) VSM (d) EVSM

(e) MSM (f) RPCF (g) EDTSM (h) EDTSM*

Fig. 10. Fixed-size penumbra produced by different techniques. Each closeup shows whether the technique handles overestimation (green) or light leaking
(red) artifacts. Images were generated for the SanMiguel model using a 10242 shadow map resolution.

shadow test and simulates penumbra without overestimation ar-1

tifacts (Figures 8-(b), 9-(b) and 10-(b)). Rather than suffering2

from shadow overestimation, VSM introduces light leaking ar-3

tifacts (Figures 8-(c), 9-(c) and 10-(c)). EVSM tries to mini-4

mize the light leaking artifacts of VSM without introducing the5

shadow overestimation (Figures 8-(d), 9-(d) and 10-(d)). On the6

other hand, MSM minimizes the light leaking artifacts of VSM7

and EVSM at the cost of the slight overestimation of shadows8

(this effect is mainly visible in Figure 10-(e)). RPCF is based9

on a filtering variant of RBSM [10] and suffers from overesti-10

mation artifacts (Figures 8-(f), 9-(f) and 10-(f)). These artifacts11

are further worsened in EDTSM (Figures 8-(g), 9-(g) and 10-12

(g)). Compared to the other techniques, the penumbra simu-13

lated by EDTSM is the one with less details along the shadow14

because of the shadow overestimation. By reformulating the15

RBSM visibility function, we could address this problem ef-16

ficiently in EDTSM*, recovering details that were missed by17

EDTSM and producing shadows with less artifacts than related 18

work (Figures 8-(h), 9-(h) and 10-(h)). 19

The proposed EDTSM* supports shadow rendering for pla- 20

nar (Figure 8-(h)) and non-planar receivers (Figures 9-(h)). 21

Moreover, EDTSM* supports penumbra simulation not only 22

for simple scenarios, but also for more complex, game-like sce- 23

narios, such as the one shown in Figure 10-(h), where several 24

light blocker and shadow receiver objects with fine detailed 25

structures (e.g., trees) are located in the same scene. Also, 26

EDTSM* supports penumbra simulation on noisy surfaces with 27

high-frequency details, as shown in Figure 12. In this figure, we 28

reinforce that EDTSM* is able to separate penumbra simulation 29

from self-shadowing, while properly handling the noisy depth 30

differences distributed over the surface. Hence, the gamut of 31

scenes shown in this section reveals that EDTSM* is able to 32

generate fixed-size penumbra, with less aliasing, light leaking 33

and shadow overestimation artifacts than related work. 34

12 Preprint Submitted for review / Computers & Graphics (2017)
(a

)E
D

T
SM

*
(b

)R
ef

er
en

ce

Fig. 11. A comparison between shadows generated by EDTSM* (top) and the ground-truth technique (bottom) for three scenes shown in this paper.
Ground-truth images were computed using the average of 1024 samples from an area light source.

Fig. 12. Fixed-size penumbra simulation on a noisy surface with laterally
increasing frequency. Image was generated for the YeahRight model using
a 10242 shadow map resolution.

EDTSM* lies in the category of shadow mapping techniques 1

that simulate fixed-size penumbra on the basis of a point light 2

source to achieve real-time performance (Figure 11-(a)). Un- 3

fortunately, shadows produced by fixed penumbra shadowing 4

techniques do not capture the realism of ground-truth soft shad- 5

ows (Figure 11-(b)), mainly because real-world penumbra has 6

a variable size that varies according to the distance of each 7

shadow receiver fragment to both light blocker fragments and 8

the area light source. 9

4.3. Processing Time 10

As shown in Tables 1 and 2, shadow mapping is the fastest 11

shadowing technique, but is not able to simulate penumbra (Fig- 12

ures 8-(a), 9-(a) and 10-(a)). Shadow map filtering is an efficient 13

way to simulate penumbra, being slightly slower than shadow 14

mapping, and relatively scalable with respect to the shadow 15

map (Table 1), viewport (Table 2) and kernel resolutions (Table 16

3). However, all this efficiency comes at the price of light leak- 17

ing artifacts generation inside shadows (Figures 8-(c, d, e), 9-(c, 18

d, e) and 10-(c, d, e)). PCF is more scalable to the shadow map 19

resolution than the shadow map filtering techniques (Table 1), 20

but is one of the slowest techniques for high-order filter sizes 21

(Table 3) and is prone to aliasing artifacts along the shadow 22

boundary (Figures 8-(b) and 9-(b)). RPCF is able to suppress 23

Preprint Submitted for review / Computers & Graphics (2017) 13

Table 1. Processing time for several hard shadow filtering techniques and
different scenes rendered at an output 1280×720 resolution. Measurements
include varying shadow map resolution. SM - Shadow Mapping. PF - Pre-
filtering techniques (namely VSM, EVSM and MSM).

Shadow Map Resolution (ms)
Scene Method 5122 10242 20482 40962

Figure 8

SM 9.3 9.4 9.5 9.9
PF 10.5 10.6 10.8 12.0

PCF 11.3 11.4 11.4 11.7
EDTSM 12.8 12.9 13.0 13.7
EDTSM* 12.9 13.0 13.2 13.8

RPCF 26.2 27.3 27.8 30.0

Figure 9

SM 0.7 0.8 0.9 1.3
PF 1.9 2.1 2.4 3.6

PCF 2.9 3.0 3.1 3.5
EDTSM 4.4 4.5 4.7 5.6
EDTSM* 4.5 4.6 4.8 5.7

RPCF 10.4 11.0 11.5 12.0

Figure 10

SM 126.2 127.2 127.8 131.1
PF 126.9 128.2 129.8 133.8

PCF 126.7 129.0 130.3 133.5
EDTSM 128.8 130.2 132.2 135.8
EDTSM* 129.5 130.9 132.8 136.3

RPCF 138.8 141.2 145.7 148.1

Table 2. Processing time for several hard shadow filtering techniques and
different scenes rendered at a 10242 shadow map resolution. Measure-
ments include varying output image resolution. SM - Shadow Mapping.
PF - Pre-filtering techniques (namely VSM, EVSM and MSM).

Output Resolution (ms)
Scene Method 480p 720p 1080p

Figure 8

SM 8.8 9.4 9.7
PF 9.9 10.6 11.3

PCF 9.8 11.4 11.9
EDTSM 10.7 12.9 14.7
EDTSM* 10.8 13.0 14.9

RPCF 16.4 27.3 30.3

Figure 9

SM 0.4 0.8 1.1
PF 0.9 2.1 3.1

PCF 0.9 3.0 4.0
EDTSM 2.3 4.5 6.9
EDTSM* 2.3 4.6 6.9

RPCF 4.3 11.0 12.5

Figure 10

SM 127.1 127.2 127.5
PF 127.8 128.2 128.8

PCF 127.8 129.0 129.5
EDTSM 128.3 130.2 132.6
EDTSM* 129.3 130.9 133.5

RPCF 132.9 141.2 143.7

aliasing artifacts (Figures 8-(f), 9-(f) and 10-(f)), but is the slow-1

est penumbra simulation technique, regardless of shadow map2

(Table 1), viewport (Table 2) and kernel resolution (Table 3).3

EDTSM and EDTSM* are slightly slower than the majority of4

previous work (Table 1) and are not scalable with respect to the5

output image resolution (Table 2), because EDT is an image-6

based operation. Finally, both EDTSM and EDTSM* are more7

Table 3. Processing time for several hard shadow filtering techniques and
different scenes rendered at an output 1280 × 720 resolution and using a
10242 shadow map resolution. Measurements include varying kernel size.
SM - Shadow Mapping. PF - Pre-filtering techniques (namely VSM, EVSM
and MSM).

Kernel Size (ms)
Scene Method 72 152 232 312

Figure 8

SM 9.4 9.4 9.4 9.4
PF 10.3 10.6 10.8 11.1

PCF 9.8 11.4 13.5 17.0
EDTSM 12.3 12.9 13.5 14.2

EDTSM* 12.4 13.0 13.5 14.3
RPCF 27.3 77.5 166.6 285.7

Figure 9

SM 0.8 0.8 0.8 0.8
PF 1.8 2.1 2.4 2.7

PCF 1.2 3.0 5.6 9.3
EDTSM 4.0 4.5 5.3 6.1

EDTSM* 4.1 4.6 5.3 6.1
RPCF 11.0 65.7 145.3 255.7

Figure 10

SM 127.2 127.2 127.2 127.2
PF 127.9 128.2 128.4 128.6

PCF 128.3 129.0 130.2 133.5
EDTSM 129.6 130.2 130.9 131.9

EDTSM* 130.3 130.9 131.6 132.6
RPCF 141.2 200.2 366.3 552.2

scalable to the filter size than PCF and RPCF techniques, be- 8

coming even faster than these two related work for high-order 9

filter sizes (Table 3). While EDTSM suffers from shadow over- 10

estimation artifacts, EDTSM* is able to reduce these artifacts, 11

while adding a small overhead of ≈1% of the processing time. 12

In Table 4, we show the processing time obtained for each 13

step of the EDTSM* for varying output resolution. We have 14

not conducted the same analysis for other parameters because 15

a variation in the shadow map resolution (Table 1) affects 16

mainly the shadow map rendering and RBSM computation 17

steps. Meanwhile, the variation of the kernel size (Table 3) af- 18

fects only the mean filtering step. 19

From Table 4, we can see that the EDT computation is the 20

bottleneck of EDTSM*. We recall that, to the best of our knowl- 21

edge, the algorithm that we use to compute the EDT in real- 22

time, the PBA [16], is the fastest algorithm able to compute 23

exact EDT on the GPU. Even in this case, the algorithm still 24

demands more than 2 milliseconds to compute the EDT in 720p 25

or higher output resolutions. 26

5. Conclusion and Future Work 27

In this paper, we have extended our previous work, pub- 28

lished in the proceedings of the Graphics Interface 2017 29

[15], by improving the anti-aliasing visibility function of the 30

revectorization-based shadow mapping technique, addressing 31

the shadow overestimation problem of the Euclidean distance 32

transform shadow mapping. From a traversal of both sides of 33

the aliased hard shadow boundary, we could define a revector- 34

ized boundary with less overestimation than the previous ap- 35

proach. With this improved version of the EDTSM algorithm, 36

14 Preprint Submitted for review / Computers & Graphics (2017)

Table 4. Processing time of each individual step of the proposed EDTSM*
(including G-buffer and shadow map rendering) for different scenes ren-
dered using a 10242 shadow map resolution. Measurements include vary-
ing output image resolution.

Output Resolution (ms)
Scene Step 480p 720p 1080p

Figure 8

G-buffer 4.1 4.5 4.7
Shadow Map 4.3 4.3 4.3

RBSM 0.2 0.4 0.6
EDT 1.3 2.3 2.9

Mean Filter 0.7 1.2 2.0
Shading 0.2 0.3 0.4

Total 10.8 13.0 14.9

Figure 9

G-buffer 0.1 0.3 0.4
Shadow Map 0.2 0.2 0.2

RBSM 0.1 0.4 0.7
EDT 1.1 2.3 3.1

Mean Filter 0.7 1.2 2.2
Shading 0.1 0.2 0.3

Total 2.3 4.6 6.9

Figure 10

G-buffer 63.4 63.5 63.6
Shadow Map 63.0 63.0 63.0

RBSM 0.6 0.7 1.0
EDT 1.3 2.3 3.3

Mean Filter 0.7 1.1 2.2
Shading 0.3 0.3 0.4

Total 129.3 130.9 133.5

we were able to enhance the visual quality of the fixed-size1

penumbra simulation, solving most of the artifacts commonly2

found in the state-of-the-art techniques. With respect to frame3

rate, the new visibility function slightly increases the processing4

time to minimize the overestimation artifact. Even so, the pro-5

posed EDTSM is more scalable than PCF and RPCF for high-6

order filter sizes, proving to be a shadowing technique attractive7

for real-time applications, such as games and augmented reality.8

Unfortunately, EDTSM is slightly slower than previous work9

because the EDT computation is the costly step of EDTSM,10

even though we make use of the fastest solution proposed so far11

for EDT computation. Hence, a suggestion for future work is12

the proposition of a faster, less accurate EDT algorithm to speed13

up EDTSM. Another option for future work is the extension of14

EDTSM to compute variable-sized penumbrae in accurate soft15

shadows.16

Acknowledgments17

We are thankful to Cao et al. [16] for gently sharing the18

source code of the parallel banding algorithm. The Fence model19

shown in this paper is courtesy of Archive3D (user Nike).20

The Excavator model is courtesy of Free3D (3Dregenerator21

user). The YeahRight model is courtesy of Keenan Crane. The22

simplified San Miguel model is courtesy of Morgan McGuire23

[43]. This research is supported by the scholarship program of24

Coordenação de Aperfeiçoamento de Pessoal do Nı́vel Superior25

(CAPES) and by NVIDIA Corporation, who provided the hard-26

ware used to evaluate this work, through the GPU Education 27

Center program. 28

References 29

[1] Wanger, LC, Ferwerda, JA, Greenberg, DP. Perceiving Spatial Re- 30

lationships in Computer-Generated Images. IEEE Comput Graph Appl 31

1992;12(3):44—58. 32

[2] Hecher, M, Bernhard, M, Mattausch, O, Scherzer, D, Wimmer, M. A 33

Comparative Perceptual Study of Soft-Shadow Algorithms. ACM Trans 34

Appl Percept 2014;11(2):5:1–5:21. 35

[3] Immel, DS, Cohen, MF, Greenberg, DP. A Radiosity Method for Non- 36

diffuse Environments. In: Proceedings of the ACM SIGGRAPH. 1986, p. 37

133–142. 38

[4] Kajiya, JT. The Rendering Equation. In: Proceedings of the ACM SIG- 39

GRAPH. 1986, p. 143–150. 40

[5] Williams, L. Casting Curved Shadows on Curved Surfaces. In: Proceed- 41

ings of the ACM SIGGRAPH. 1978, p. 270–274. 42

[6] Williams, L. Pyramidal parametrics. In: Proceedings of the ACM SIG- 43

GRAPH. 1983, p. 1–11. 44

[7] Heckbert, PS. Fundamentals of texture mapping and image warping. 45

Tech. Rep.; 1989. 46

[8] Bruneton, E, Neyret, F. A Survey of Nonlinear Prefiltering Methods for 47

Efficient and Accurate Surface Shading. IEEE Transactions on Visualiza- 48

tion and Computer Graphics 2012;18(2):242–260. 49

[9] Reeves, WT, Salesin, DH, Cook, RL. Rendering Antialiased Shadows 50

with Depth Maps. In: Proceedings of the ACM SIGGRAPH. 1987, p. 51

283–291. 52

[10] Macedo, M, Apolinario, A. Revectorization-Based Shadow Mapping. 53

In: Proceedings of the GI. 2016, p. 75–83. 54

[11] Donnelly, W, Lauritzen, A. Variance Shadow Maps. In: Proceedings of 55

the ACM I3D. 2006, p. 161–165. 56

[12] Annen, T, Mertens, T, Seidel, HP, Flerackers, E, Kautz, J. Exponential 57

Shadow Maps. In: Proceedings of GI. 2008, p. 155–161. 58

[13] Salvi, M. Rendering filtered shadows with exponential shadow maps. In: 59

ShaderX 6.0 Advanced Rendering Techniques. Hingham (Mass.): Charles 60

River Media; 2008, p. 257–274. 61

[14] Peters, C, Klein, R. Moment Shadow Mapping. In: Proceedings of the 62

ACM I3D. 2015, p. 7–14. 63

[15] Macedo, M, Apolinario, A. Euclidean Distance Transform Shadow 64

Mapping. In: Proceedings of the GI. 2017, p. 181–189. 65

[16] Cao, TT, Tang, K, Mohamed, A, Tan, TS. Parallel Banding Algorithm 66

to Compute Exact Distance Transform with the GPU. In: Proceedings of 67

the ACM I3D. 2010, p. 83–90. 68

[17] Eisemann, E, Schwarz, M, Assarsson, U, Wimmer, M. Real-Time 69

Shadows. Natick, MA, USA: A.K. Peters; 2011. ISBN 978-1568814384. 70

[18] Woo, A, Poulin, P. Shadow Algorithms Data Miner. Natick, MA, USA: 71

CRC Press; 2012. ISBN 978-1439880234. 72

[19] Stamminger, M, Drettakis, G. Perspective Shadow Maps. ACM Trans 73

Graph 2002;21(3):557–562. 74

[20] Lloyd, DB, Govindaraju, NK, Quammen, C, Molnar, SE, Manocha, 75

D. Logarithmic Perspective Shadow Maps. ACM Trans Graph 76

2008;27(4):106:1–106:32. 77

[21] Fernando, R, Fernandez, S, Bala, K, Greenberg, DP. Adaptive Shadow 78

Maps. In: Proceedings of the ACM SIGGRAPH. 2001, p. 387–390. 79

[22] Lauritzen, A, Salvi, M, Lefohn, A. Sample Distribution Shadow Maps. 80

In: Proceedings of the ACM I3D. 2011, p. 97–102. 81

[23] Bondarev, V. Shadow Map Silhouette Revectorization. In: Proceedings 82

of the ACM I3D. 2014, p. 162–162. 83

[24] Sen, P, Cammarano, M, Hanrahan, P. Shadow Silhouette Maps. ACM 84

Trans Graph 2003;22(3):521–526. 85

[25] Pan, M, Wang, R, Chen, W, Zhou, K, Bao, H. Fast, Sub-pixel An- 86

tialiased Shadow Maps. Computer Graphics Forum 2009;28(7):1927– 87

1934. 88

[26] Lecocq, P, Marvie, JE, Sourimant, G, Gautron, P. Sub-pixel Shadow 89

Mapping. In: Proceedings of the ACM I3D. 2014, p. 103–110. 90

[27] Annen, T, Mertens, T, Bekaert, P, Seidel, HP, Kautz, J. Convolution 91

Shadow Maps. In: Proceedings of the EGSR. 2007, p. 51–60. 92

[28] Lauritzen, A, McCool, M. Layered Variance Shadow Maps. In: Pro- 93

ceedings of the GI. 2008, p. 139–146. 94

Preprint Submitted for review / Computers & Graphics (2017) 15

[29] Gumbau, J, Sbert, M, Szirmay-Kalos, L, Chover, M, González, C.1

Shadow Map Filtering with Gaussian Shadow Maps. In: Proceedings of2

the ACM VRCAI. 2011, p. 75–82.3

[30] Gumbau, J, Sbert, M, Szirmay-Kalos, L, Chover, M, González, C.4

Smooth shadow boundaries with exponentially warped gaussian filtering.5

Computers & Graphics 2013;37(3):214 – 224.6

[31] Peters, C. Non-linearly quantized moment shadow maps. In: Proceedings7

of the HPG. ISBN 978-1-4503-5101-0; 2017, p. 15:1–15:11.8

[32] DeCoro, C, Cole, F, Finkelstein, A, Rusinkiewicz, S. Stylized Shadows.9

In: Proceedings of the ACM NPAR. 2007, p. 77–83.10

[33] Saito, T, Takahashi, T. Comprehensible Rendering of 3-D Shapes. In:11

Proceedings of the ACM SIGGRAPH. 1990, p. 197–206.12

[34] Wright, MW, Cipolla, R, Giblin, PJ. Skeletonization using an ex-13

tended Euclidean distance transform. Image and Vision Computing14

1995;13(5):367 – 375.15

[35] Hesselink, WH, Roerdink, JBTM. Euclidean Skeletons of Digital Im-16

age and Volume Data in Linear Time by the Integer Medial Axis Trans-17

form. IEEE Transactions on Pattern Analysis and Machine Intelligence18

2008;30(12):2204–2217.19

[36] MohammadBagher, M, Kautz, J, Holzschuch, N, Soler, C. Screen-20

space Percentage-Closer Soft Shadows. In: Proceedings of the ACM21

SIGGRAPH Posters. 2010, p. 133–133.22

[37] Shreiner, D, Sellers, G, Kessenich, JM, Licea-Kane, BM. OpenGL23

Programming Guide: The Official Guide to Learning OpenGL, Version24

4.3. 8th ed.; Addison-Wesley Professional; 2013. ISBN 0321773039,25

9780321773036.26

[38] Rost, RJ, Licea-Kane, B, Ginsburg, D, Kessenich, JM, Lichtenbelt, B,27

Malan, H, et al. OpenGL Shading Language. 3rd ed.; Addison-Wesley28

Professional; 2009. ISBN 0321637631, 9780321637635.29

[39] Kirk, DB, Hwu, WmW. Programming Massively Parallel Processors: A30

Hands-on Approach. 2 ed.; San Francisco, CA, USA: Morgan Kaufmann31

Publishers Inc.; 2013. ISBN 9780123914187.32

[40] Rong, G, Tan, TS. Jump Flooding in GPU with Applications to Voronoi33

Diagram and Distance Transform. In: Proceedings of the ACM I3D.34

2006, p. 109–116.35

[41] Schneider, J, Kraus, M, Westermann, R. GPU-based real-time discrete36

euclidean distance transforms with precise error bounds. In: Proceedings37

of the VISAPP. 2009, p. 435–442.38

[42] Wang, J, Tan, Y. Efficient euclidean distance transform algorithm of bi-39

nary images in arbitrary dimensions. Pattern Recognition 2013;46(1):23040

– 242.41

[43] McGuire, M. Computer graphics archive. 2017.42

https://casual-effects.com/data.43

Appendix A. Algorithm’s Pseudocodes44

In EDTSM, the user is allowed to define the value of two vari-45

ables: the size of the penumbra to be simulated (Line 1 of Algo-46

rithm 1) and the size of the mean filter used to suppress skeleton47

artifacts in the penumbra (Line 2 of Algorithm 1). Then, for ev-48

ery frame, we need to render two essential textures for EDTSM:49

the shadow map to allow the real-time shadow computation50

(Line 4 of Algorithm 1) and the G-buffer to speed up the EDT51

computation and make it edge aware and invariant to the cam-52

era viewpoint (Line 5 of Algorithm 1). Next, on the basis of53

these two textures, we render another image that contains the54

anti-aliased hard shadows computed with the improved RBSM55

(Line 6 of Algorithm 1). Afterwards, we compute the normal-56

ized EDT over the image with the revectorized hard shadows57

to simulate a penumbra with size P (Line 7 of Algorithm 1). In58

this case, we use the G-buffer previously computed to return the59

world-space position of each fragment in the camera view, data60

that allow the EDT to be computed in the world space, rather61

than in the image space solely. We pass the image with the62

rendered penumbra to another shader that is responsible for the63

separable screen-space mean filtering over the penumbra (Line64

Algorithm 1 Euclidean distance transform shadow mapping
1: P← penumbra size;
2: w f ilter ← mean filter size;
3: for each frame do
4: S← renderShadowMap;
5: G← renderGBuffer;
6: R← revectorizeShadow(S, G);
7: EDT← performEDTShadowing(R, G, P);
8: F← filterShadow(EDT, G, w f ilter);
9: renderShadowedScene(F, G);

10: end for

Algorithm 2 Revectorization-based shadow mapping
1: procedure revectorizeShadow(S, G)
2: for each surface point p in camera view, visible in G do
3: p̃← transformPointToLightSpace(p);
4: s← computeShadowTest(S, p̃z);
5: N← evaluateNeighbourhood(S, p̃z);
6: d← computeDiscontinuityDirections(N, s);
7: α← estimateRelativePosition(S, p, p̃, d);
8: v← computeVisibilityFunction(s, α);
9: end for

10: return an image with v computed for every p in G;
11: end procedure

8 of Algorithm 1). In this filter, the G-buffer is used to detect 65

the depth difference between neighbour fragments, making the 66

mean filtering edge aware. ALso, the G-buffer is used to re- 67

trieve the world-space position and adequate the user-defined 68

filter size w f ilter to be viewpoint invariant. Finally, the resulting 69

filtered image is used to output the final shaded scene (Line 9 70

of Algorithm 1). 71

As for RBSM, which is implemented in a single pass on the 72

shader (Algorithm 2), the G-buffer is only used to restrict the 73

hard shadow computation for the visible fragments in the cam- 74

era view (Line 2 of Algorithm 2). Then, for each visible frag- 75

ment transformed to the light space (Line 3 of Algorithm 2), the 76

shadow test is computed to determine the hard shadow visibility 77

of the fragment (Line 4 of Algorithm 2) and of its neighbours in 78

the shadow map (Line 5 of Algorithm 2. Afterwards, the direc- 79

tions of where the shadow aliasing is located are detected (Line 80

6 of Algorithm 2). Finally, a traversal performed in the shadow 81

map allows the estimation of the relative position of each frag- 82

ment in the aliased boundary (Line 7 of Algorithm 2) and of 83

the final anti-aliased hard shadow visibility condition of each 84

fragment (Line 8 of Algorithm 2). As an output of RBSM, the 85

shader returns an image with the hard shadow intensities com- 86

puted for every visible fragment in the camera view (Line 10 of 87

Algorithm 2. 88

	Introduction
	Related Work
	Euclidean Distance Transform Shadow Mapping
	Revectorization-Based Shadow Mapping
	Improved Shadow Anti-Aliasing
	Euclidean Distance Transform Penumbra Simulation
	Euclidean Distance Transform Shadow Filtering

	Results and Discussion
	Experimental Environment
	Rendering Quality
	Processing Time

	Conclusion and Future Work
	Algorithm's Pseudocodes

